Transcriptional control of behaviour: engrailed knockout changes cockroach escape trajectories
نویسندگان
چکیده
This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. The cerci of the cockroach are covered with identified sensory hairs that detect air movements. The sensory neurons that innervate these hairs synapse with giant interneurons in the terminal ganglion that in turn synapse with interneurons and leg motor neurons in thoracic ganglia. This neural circuit mediates the animal's escape behavior. The transcription factor Engrailed (En) is expressed only in the medially born sensory neurons, which suggested that it could work as a positional determinant of sensory neuron identity. Previously, we used double-stranded RNA interference to abolish En expression and found that the axonal arborization and synaptic outputs of an identified En-positive sensory neuron changed so that it came to resemble a nearby En-negative cell, which was itself unaffected. We thus demonstrated directly that En controls synaptic choice, as well as axon projections. Is escape behavior affected as a result of this miswiring? We showed recently that adult cockroaches keep each escape unpredictable by running along one of a set of preferred escape trajectories (ETs) at fixed angles from the direction of the threatening stimulus. The probability of selecting a particular ET is influenced by wind direction. In this present study, we show that early instar juvenile cockroaches also use those same ETs. En knockout significantly perturbs the animals' perception of posterior wind, altering the choice of ETs to one more appropriate for anterior wind. This is the first time that it has been shown that knockout of a transcription …
منابع مشابه
Transcriptional control of behavior: engrailed knock-out changes cockroach escape trajectories.
The cerci of the cockroach are covered with identified sensory hairs that detect air movements. The sensory neurons that innervate these hairs synapse with giant interneurons in the terminal ganglion that in turn synapse with interneurons and leg motor neurons in thoracic ganglia. This neural circuit mediates the animal's escape behavior. The transcription factor Engrailed (En) is expressed onl...
متن کاملCockroaches Keep Predators Guessing by Using Preferred Escape Trajectories
Antipredator behavior is vital for most animals and calls for accurate timing and swift motion. Whereas fast reaction times [1] and predictable, context-dependent escape-initiation distances [2] are common features of most escape systems, previous work has highlighted the need for unpredictability in escape directions, in order to prevent predators from learning a repeated, fixed pattern [3-5]....
متن کاملPolycomb Group Proteins Bind an engrailed PRE in Both the “ON” and “OFF” Transcriptional States of engrailed
Polycomb group (PcG) and trithorax Group (trxG) proteins maintain the "OFF" and "ON" transcriptional states of HOX genes and other targets by modulation of chromatin structure. In Drosophila, PcG proteins are bound to DNA fragments called Polycomb group response elements (PREs). The prevalent model holds that PcG proteins bind PREs only in cells where the target gene is "OFF". Another model pos...
متن کاملControl of cercal position during flight in the cockroach: a mechanism for regulating sensory feedback.
In a flying cockroach, the response of cereal wind receptors to standard wind stimuli was reduced by 40 % compared with when the animal was at rest. While flying, rhythmic bursts of action potentials, phase-locked to the wingbeat rhythm, descended the nerve cord. These bursts appeared responsible for a phase-locked rhythmic discharge of cereal motor neurones. This, in turn, evoked a cereal disp...
متن کاملDescending influences on escape behavior and motor pattern in the cockroach.
The escape behavior of the cockroach is a ballistic behavior with well characterized kinematics. The circuitry known to control the behavior lies in the thoracic ganglia, abdominal ganglia, and abdominal nerve cord. Some evidence suggests inputs may occur from the brain or suboesophageal ganglion. We tested this notion by decapitating cockroaches, removing all descending inputs, and evoking esc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017